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Auditory inputs modulate intrinsic neuronal
timescales during sleep
Philipp Klar 1,2✉, Yasir Çatal3, Stuart Fogel 4, Gerhard Jocham1, Robert Langner 2,5, Adrian M. Owen 6 &

Georg Northoff 3,7

Functional magnetic resonance imaging (fMRI) studies have demonstrated that intrinsic

neuronal timescales (INT) undergo modulation by external stimulation during consciousness.

It remains unclear if INT keep the ability for significant stimulus-induced modulation during

primary unconscious states, such as sleep. This fMRI analysis addresses this question via a

dataset that comprises an awake resting-state plus rest and stimulus states during sleep. We

analyzed INT measured via temporal autocorrelation supported by median frequency (MF) in

the frequency-domain. Our results were replicated using a biophysical model. There were two

main findings: (1) INT prolonged while MF decreased from the awake resting-state to the N2

resting-state, and (2) INT shortened while MF increased during the auditory stimulus in

sleep. The biophysical model supported these results by demonstrating prolonged INT in

slowed neuronal populations that simulate the sleep resting-state compared to an awake

state. Conversely, under sine wave input simulating the stimulus state during sleep, the

model’s regions yielded shortened INT that returned to the awake resting-state level. Our

results highlight that INT preserve reactivity to stimuli in states of unconsciousness like sleep,

enhancing our understanding of unconscious brain dynamics and their reactivity to stimuli.
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The brain’s ongoing spontaneous activity measured in the
resting-state comprises a range of timescales varying in
length and power, labeled intrinsic neuronal timescales

(INT) in the recent neuroimaging literature (see1,2 for reviews).
INT are observed across all neuroimaging modalities, ranging
from electrophysiological single-unit recordings in humans3 and
non-human primates4 over invasive electrocorticography
(ECoG)5 and non-invasive electroencephalography (EEG)
recording6,7, to hemodynamic functional magnetic resonance
imaging (fMRI) scans8–12. Beyond resting-state studies, stimulus-
and task-related studies under conscious wakefulness showed that
INT can be modulated by the processing of stimuli, such as
audiovisual13 and visual14 movie clips, auditory language
processing15,16, and memory-related processes17. These studies
investigated stimulus-induced INT modulation during conscious
wakefulness. While present discussions of brain dynamics often
focus on the neuronal correlates of consciousness (see18,19 for
reviews), in line with INT analyses under conscious wakefulness,
INT during states of unconsciousness like sleep remain relatively
understudied (see refs. 8,20 for two paradigmatic exceptions).

The question remains if the observed INT modulation by sti-
muli during conscious wakefulness is preserved during a primary
unconscious state like sleep. Our fMRI analysis aimed to inves-
tigate this question by comparing INT in a sleep resting-state and
during sleep with concurrent auditory stimulus presentation. Two
recent studies investigated changing INT lengths during uncon-
scious states. Specifically, an EEG study20 observed a prolonga-
tion of INT from non-rapid eye movement (NREM or N) 1 to
N3 sleep. An fMRI study8 observed abnormally prolonged
resting-state INT in light and deep propofol-induced anesthesia.
Concerning our aim, these observations leave open two questions.
First, do INT also show prolongation during sleep in fMRI
recordings? Second, in the case of prolonged INT during sleep,
can significant stimulus-induced INT modulations still occur
during this primary unconscious state? If INT would display
significant stimulus-induced modulation during sleep, INT
adaption to environmental stimuli could represent a necessary
albeit non-sufficient predisposition for consciousness, enhancing
our understanding of the transition from unconscious to con-
scious brain dynamics.

In neuroimaging, INT lengths are often measured by the
electrophysiological or hemodynamic signal’s temporal auto-
correlation (AC)2,4,10–12,21. The autocorrelation function is a
dimensionless statistic that measures the degree of potentially
repeating patterns, namely temporal correlations, in a time-
series22. The autocorrelation window (ACW) is a specification of
the autocorrelation function by a specifically chosen time lag for
extracting one parameter from the autocorrelation function, such
as by selecting the autocorrelation function’s ACW 50 (the time
lag at which the autocorrelation crosses r= 0.5)10,13 or the lag of
the first zero crossing (r= 0), abbreviated as ACW 01,7,23,24.
Besides investigating the temporal AC, we measured the median
frequency (MF) that divides the power spectral density into two
halves with an equal area under the curve8,25,26. The
Wiener–Khinchin theorem connects AC with spectral contents27

measured via the MF. The AC can exhibit long frequency cycle
durations that are observable in the frequency-domain13,20, where
AC prolongation corresponds to a decrease in MF and vice versa.
The MF can consequently index that longer INT in uncon-
sciousness during sleep (compared to conscious wakefulness) are
supported by a higher power in the low-frequency spectral
content.

We tested two hypotheses as displayed in Fig. 1a. Hypothesis
one concerns the Awake-Rest vs. Sleep-Rest (N2 sleep) compar-
ison, and hypothesis two the Sleep-Rest vs. Sleep-Stimulus
(auditory stimulus presentation during sleep) comparison.

Furthermore, we included a large-scale biophysical model28 that
aimed to replicate the empirical results in simulations to validate
the reactivity of INT and MF, where a sine wave simulated the
extrinsic stimulus.

Hypothesis one (Awake-Rest vs. Sleep-Rest): Compared to
Awake-Rest, we hypothesized a prolongation of INT during
unconsciousness in Sleep-Rest, corresponding to increasing AC
and decreasing MF, with the latter indexing a power shift towards
slower frequencies. This hypothesis rests on previous EEG
observations in the frequency band 1–80 Hz that showed INT
prolongation under unconsciousness in sleep20, unresponsive
wakefulness syndrome20,24, and propofol-induced anesthesia20.
In the hemodynamic infra-slow frequency band (0.01–0.1 Hz),
one fMRI study showed INT prolongation during propofol-
induced anesthesia8, leaving open the question if sleep also pro-
longs INT in fMRI. Following these EEG and fMRI results and
given that INT modulate the processing of environmental
stimuli1,13,14,28–30, which is reduced during N2 sleep31,32, we
hypothesized INT prolongation in Sleep-Rest, accompanied by a
power shift towards slower frequencies indexed by MF.

Hypothesis two (Sleep-Rest vs. Sleep-Stimulus): Regarding the
presentation of a continuous auditory stimulation for 5 min 12 s
at the end of each participant’s sleeping session, we hypothesized
INT shortening in Sleep-Stimulus, as compared to Sleep-Rest. A
shortening of INT in response to the auditory stimulus would
correspond to decreasing AC and increasing MF levels. The
second hypothesis concerning sleep can extend previous study
results that demonstrated INT modulation by environmental
stimuli under conscious wakefulness1,9,15–17,29. We also base the
second hypothesis of shortened INT across the cerebral cortex in
response to the ongoing auditory stimulus on the following the-
oretical consideration: Two previous fMRI analyses by our
group33,34 observed a cerebral cortex-wide and uniform response
to an auditory stimulus, measured via two variables in the fre-
quency-domain, namely the power-law exponent (the spectral
slope in the logarithmic power spectrum) and mean frequency.
More precisely, in the assessed slow event-related design with
inter-trial intervals of 52–60 s33 and 15.5–25.5 s34, the BOLD
signal showed a shift towards slower dynamics by increased
power in slower and reduced power in faster frequencies, corre-
sponding to a higher spectral slope and reduced MF that should,
in turn, correspond to prolonged INT. Moreover, this uniform
response of the two variables also occurred in the same seven
individual networks investigated in this sleep fMRI analysis (see
Fig. 5a in ref. 34).

Based on the above, we hypothesized that in response to
ongoing naturalistic inputs (contrary to a slow event-related
design), the brain potentially shows the opposite behavior in its
stimulus-induced activity, that is, increased power in faster fre-
quencies while decreasing power in slower frequencies, thus
shortening INT in the same seven networks and the complete
cerebral cortex. Shortened INT in response to the auditory sti-
mulus (compared to Sleep-Rest) can potentially be related to the
naturalistic stimulus’ variability that induces higher brain varia-
bility even during sleep, where increased BOLD variability results
in shortened autocorrelation or INT. However, since we could not
explicitly analyze the stimulus to test this additional hypothesis,
we refrained from actually investigating this idea in the current
analysis and left it for further research.

Furthermore, a recent study investigating conscious wakeful-
ness demonstrated that a stimulus-induced state induced higher
degrees of topographic similarity across cerebral cortex parcels
than the resting-state35. Following this finding, we hypothesized a
higher topographic similarity between cortical parcels during
Sleep-Stimulus. More precisely, we hypothesized a more uniform
distribution of INT across the parcels in each of the seven
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functional connectivity-based Yeo networks36 and in the global
cerebral cortex parcels compared to the Sleep-Rest state (Fig. 1b
displays the seven networks). We analyzed the topographic
similarity via Fisher Z transformed pairwise Pearson correlation
matrices of the seven networks’ and cerebral cortex’ cortical
parcels36. We predicted higher correlations for Sleep-Stimulus
compared to Sleep-Rest. Recent fMRI results highlighted sig-
nificant global or brain-wide activity changes in unconscious
states37,38 and thus provided a rationale for additionally analyzing
the complete cerebral cortex beside the seven individual networks.
Following the seven-network hypothesis, we likewise hypothe-
sized brain-wide INT prolongation and decreased MF in Sleep-
Rest compared to Awake-Rest, as well as INT shortening and
increased MF in Sleep-Stimulus compared to Sleep-Rest.

Figure 1a displays an overview of our functional MRI analysis’
two hypotheses, and Fig. 1b displays the investigated cortical
topography.

In short, our findings revealed prolonged INT and decreased
MF from the awake resting-state to the N2 sleep resting-state, and
(2) INT shortened while MF increased during the auditory sti-
mulus based on a movie clip in sleep. The biophysical model
supported these results by demonstrating prolonged INT in slo-
wed neuronal populations that simulate the sleep resting-state
compared to an awake state.

Results
We statistically compared two investigated states: (1) Awake-Rest
vs. Sleep-Rest and (2) Sleep-Rest vs. Sleep-Stimulus. The Sleep-

Fig. 1 Overview of the two hypotheses and cortical topography. a Two analyzed measurements are the temporal autocorrelation (AC) and median
frequency (MF). b Updated version of the Yeo seven network cortical parcellation, the Schaefer–Yeo AFNI 2021 atlas based on the 1000 parcels version
(see section “Seven networks and cerebral cortex topography” for details). We investigated the local seven networks and their combination into a global
level comprising the complete cerebral cortex.
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Rest state denotes N2 sleep, and Sleep-Stimulus refers to the
auditory stimulus during sleep. The presentation of the AC and
MF results is structured as follows: First, we present the local
seven networks results, followed by the global cerebral cortex
results. Second, we display the pairwise Pearson correlation
matrices for the seven networks and the cerebral cortex, followed
by the biophysical model results. Finally, we show the results of
control analyses I and II.

Since not all participants remained fully asleep during the
entire auditory stimulus presentation, even though no partici-
pants consciously recalled hearing the auditory stimulus at the
end of the scanning session, we separately analyzed the AC and
MF measurements in those four participants who remained fully
asleep during the entire auditory stimulus presentation. We
examined if these four participants showed the same result pat-
terns as observed for all 17 participants.

AC: local changes in seven networks. First, we analyzed if INT
exhibit a significant prolongation in sleep, that is, in Sleep-Rest
compared to Awake-Rest. Potentially prolonged INT in Sleep-
Rest can serve as a baseline if these prolonged INT would retain
the capability for a significant stimulus-induced modulation in
the Sleep-Stimulus state, subsequently tested in the Sleep-Rest vs.
Sleep-Stimulus comparison. Awake-Rest vs. Sleep-Rest: We
observed significantly increased AC lengths from Awake-Rest to
Sleep-Rest in all seven networks (t ≥−2.84, p ≤ 0.012). Sleep-Rest
vs. Sleep-Stimulus: Except for the limbic network (t=−0.87,
p= 1), the remaining six networks showed reduced AC lengths
from Sleep-Rest to Sleep-Stimulus. Four networks, precisely the
visual, dorsal attention, frontoparietal, and the default-mode
networks, showed significantly reduced Sleep-Stimulus vs. Sleep-
Rest AC lengths (t ≥ 2.33, p ≤ 0.033). Together, the AC underwent
significant stimulus-induced modulation in four of seven net-
works during sleep. Figure 2 displays the seven network AC
results.

MF: local changes in seven networks. Given that slower fre-
quencies can strongly modulate the AC length13, we also analyzed
the MF in the frequency-domain in all three states to further
validate the observed AC changes. Awake-Rest vs. Sleep-Rest: We
observed increased power in slower frequencies and decreased
power in faster frequencies in Sleep-Rest, corresponding to sig-
nificantly decreased MF levels from Awake-Rest to Sleep-Rest in
all seven networks (t ≥ 4.91, p ≤ 0.001). Sleep-Rest vs. Sleep-Sti-
mulus: Except for the limbic network where the Sleep-Rest vs.
Sleep-Stimulus MF did not significantly change (t= 0.7, p= 1),
the remaining six networks showed increased MF from Sleep-Rest
to Sleep-Stimulus (t ≥−3.14, p ≤ 0.006). Together, the MF in the
Sleep-Stimulus state increased in all seven networks compared to
Sleep-Rest, demonstrating stimulus-induced modulation during
sleep. Figure 3 displays the seven network MF results.

AC: global changes in the cerebral cortex. Compared to con-
scious wakefulness, states of unconsciousness are not constrained
to specific local network-based brain dynamics, but changes also
occur in global or brain-wide activity, as compared to conscious
wakefulness37,38. Accordingly, we analyzed AC in the cerebral
cortex for the three investigated states to test if INT exhibit sig-
nificant modulation across the entire cortical surface beyond
specific and localized network changes from Awake-Rest to Sleep-
Rest and Sleep-Rest to Sleep-Stimulus. Awake-Rest vs. Sleep-Rest:
We observed significantly increased AC lengths from Awake-Rest
to Sleep-Rest on the global level of the cerebral cortex (t=−5.89,
p < 0.001). Sleep-Rest vs. Sleep-Stimulus: AC lengths significantly
decreased when comparing Sleep-Rest vs. Sleep-Stimulus

(t= 2.75, p= 0.014). The AC results followed our two hypoth-
eses. First, INT showed a significant prolongation in Sleep-Rest
vs. Awake-Rest in the local seven networks and global cerebral
cortex analyses. Second, INT significantly decreased back or even
below the Awake-Rest AC length during the presentation of the
ongoing auditory stimulus. Together, these INT changes
demonstrate the former’s brain-wide modulation during
stimulus-induced inputs in sleep.

MF: global changes in the cerebral cortex. Following the cere-
bral cortex AC analysis, we likewise computed the MF for the
cerebral cortex to validate that global MF levels follow the
observed global AC results. Awake-Rest vs. Sleep-Rest: We
observed increased power in slower and decreased power in
faster frequencies, corresponding to significantly decreased MF
levels from Awake-Rest to Sleep-Rest on the global level of the
cerebral cortex (t= 9.2, p < 0.001). Sleep-Rest vs. Sleep-Stimu-
lus: In opposition to the Awake-Rest vs. Sleep-Rest comparison,
the power spectra showed a shift in power from slower to faster
frequencies when comparing Sleep-Rest vs. Sleep-Stimulus,
corresponding to increased MF levels (t=−4.14, p < 0.001).
Together, the MF results followed our two hypotheses and
matched the AC results. First, MF levels decreased from Awake-
Rest to Sleep-Rest in the seven networks and cerebral cortex.
Second, the MF levels significantly increased in response to the
ongoing auditory stimulus during Sleep-Stimulus on the local
network and global cerebral cortex levels, with the only
exception being the limbic network. Following the AC results,
the MF results also demonstrated a global nature of stimulus-
induced modulations in sleep. Figure 4a displays the global level
cerebral cortex AC and Fig. 4b the MF results. Supplementary
Note 4 provides additional information where Supplementary
Tables 6 and 7 summarize the AC results and statistics, and
Supplementary Tables 8 and 9 summarize the MF results and
statistics.

Topographic similarity of temporal AC: seven networks and
cerebral cortex. To further track the auditory stimulus’ impact
on the brain’s spatial topography beyond temporal changes
measured in the time and frequency domain, we investigated
the AC’s and MF’s topographic similarity by computing the
Fisher Z transformed pairwise Pearson correlation matrices for
the seven networks and the cerebral cortex in the three states
analyzed here. The seven networks’ and cerebral cortex parcels
allowed us to obtain the sets of Pearson correlation values so
that every parcel yielded one Pearson correlation coefficient. As
a result of the stimuli’s impact on primary unconscious brain
dynamics during sleep, we predicted significantly different
pairwise correlation distributions between Sleep-Rest and Sleep-
Stimulus. We computed paired t Tests of the Pearson correla-
tions for each network and the cerebral cortex. Additionally, we
calculated the median pairwise correlation for all three states
investigated.

Seven networks: All seven networks showed the highest median
correlation in Sleep-Stimulus compared to Awake-Rest and Sleep-
Rest. All seven networks showed significantly higher correlations
in Sleep-Stimulus compared to Sleep-Rest (t ≥−42.71, p < 0.001).
Cerebral cortex: The cerebral cortex overall showed an inter-
mediate correlation in Awake-Rest (r= 0.26), the lowest correla-
tion in Sleep-Rest (r= 0.12), and the highest correlation in Sleep-
Stimulus (r= 0.55). Sleep-Stimulus yielded a significantly higher
correlation than Sleep-Rest (t=−786.33, p= 0) for the cerebral
cortex. The seven networks’ and cerebral cortex’s higher
topographic similarity in Sleep-Stimulus compared to Sleep-
Rest supports the notion that the auditory stimulation reveals a
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global reactivity of brain dynamics to (subconscious) environ-
mental input that reaches beyond localized stimulus-induced
modulations in specific networks or regions. Figure 5a displays a
schematic illustration of the approach to compute pairwise

correlation matrices, Fig. 5b displays the networks and cerebral
cortex AC pairwise correlation matrices results, Fig. 5c the
statistical results, and Supplementary Table 10 summarizes the
results.

Fig. 2 Temporal autocorrelation (AC) results for the seven networks in Awake-Rest, Sleep-Rest, and Sleep-Stimulus. Each line represents one
participant, and the thicker red line represents the mean across participants. The horizontal blue line represents the first autocorrelation function’s first zero
crossing, and the vertical pink line represents the voxel-based mean AC across all participants. (Awa, Awake-Rest; Sle, Sleep-Rest; Sti, Sleep-Stimulus;
Statistics, Student’s paired t Test; significance asterisks, *p < 0.05, **p < 0.01, ***p < 0.001; Bonferroni correction = p values multiplied by two; n= 17
participants).
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Topographic similarity MF: seven networks and
cerebral cortex. Seven networks: All seven networks showed the
highest median correlation in Sleep-Stimulus compared to
Awake-Rest and Sleep-Rest. All seven networks showed sig-
nificantly higher correlations in Sleep-Stimulus compared to

Sleep-Rest (t ≥− 43.92, p < 0.001). Cerebral cortex: The cerebral
cortex showed the lowest correlation in Awake-Rest (r= 0.23), a
minimally higher correlation in Sleep-Rest (r= 0.26), and the
highest correlation in Sleep-Stimulus (r= 0.53). Sleep-Stimulus
yielded a significantly higher correlation than Sleep-Rest

Fig. 3 Power spectra and median frequency (MF) results for the seven networks in Awake-Rest, Sleep-Rest, and Sleep-Stimulus. Each line represents
one participant, and the thicker red line represents the mean across participants. The vertical pink line represents the voxel-based average MF across all
participants. (Awa, Awake-Rest; Sle, Sleep-Rest; Sti, Sleep-Stimulus; Statistics, Student’s paired t Test; significance asterisks, *p < 0.05, **p < 0.01,
***p < 0.001; Bonferroni correction = p values multiplied by two; n= 17 participants).
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(t=−561.68, p= 0) for the cerebral cortex. Consequently, the
topographic similarity results of MF perfectly followed the
observed AC results by showing significantly increased topo-
graphic similarity in Sleep-Stimulus compared to Sleep-Rest.
Figure 6a displays the networks and cerebral cortex MF pairwise
correlation matrices, Fig. 6b the statistical results, and Supple-
mentary Table 11 summarizes the results.

Biophysical model. The empirical results demonstrated a sig-
nificant stimulus-induced modulation of INT and MF during
sleep. The results suggest that even prolonged INT during sleep
remain the capability for stimulus-induced modulation, and we
applied a realistic biophysical model28 to support our empirical
results. The model simulated the three conditions, i.e., Awake-
Rest, Sleep-Rest, and Sleep-Stimulus. For the Awake-Rest state,
we used the model’s default parameters and provided white noise
input to area V1. For Sleep-Rest, we changed the excitatory time
constant from 20 to 60 ms, slowing down excitatory populations
relative to inhibitory ones, and used the same white noise. For
Sleep-Stimulus, we introduced a sine wave on top of white noise

in the already slowed down model. Figure 7 displays the AC
values for each region. Each violin shows the distribution of AC
values across 30 simulations. Slowing down excitatory popula-
tions increased the AC values in all regions, akin to the empirical
Sleep-Rest state. Conversely, most regions returned to their initial
AC values under the presentation of a sine wave. The biophysical
model results demonstrate that changes in the excitatory time
constant can explain the observed INT prolongation in Sleep-Rest
and the INT shortening in Sleep-Stimulus as observed in the
empirical data.

In addition to our original input (a 25 Hz sine wave), we ran
the same simulations with alternative input scenarios: combina-
tion of 3 sine waves with frequencies 25, 50, 75 Hz; 5 sine waves
with frequencies 5, 25, 50, 75 and 100 Hz; and a waveform that
goes between 20 and 100 Hz (shown in Supplementary Fig. 5)
over the course of whole simulation. In all these different
scenarios, we were able to get qualitative agreement with the
results shown in Fig. 7. These results, presented in Supplementary
note 3, are shown in Supplementary Figs. 3, 4, and 6, respectively.
These results show that the results from our arbitrarily chosen
25 Hz scenario holds in different scenarios as well. Specifically, in

Fig. 4 Temporal autocorrelation (AC) and median frequency (MF) results for the cerebral cortex in Awake-Rest, Sleep-Rest, and Sleep-Stimulus. a AC
results. Each line represents one participant, and the thicker red line represents the mean across participants. The horizontal blue line represents the first
autocorrelation function’s first zero crossing, and the vertical pink line represents the voxel-based mean AC across all participants. Cortical brain surfaces
represent mean AC results across participants. b MF results. Each line represents one participant, and the thicker red line represents the mean across
participants. The vertical pink line represents the voxel-based mean MF across all participants. Cortical brain surfaces represent mean MF results across
participants. (Awa, Awake-Rest; Sle, Sleep-Rest; Sti, Sleep-Stimulus; Statistics, Student’s paired t Test; significance asterisks, *p < 0.05, **p < 0.01,
***p < 0.001; Bonferroni correction = p values multiplied by two; n= 17 participants).
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the stimulation with the combination of 3 frequencies (Supple-
mentary Fig. 3), 11 of the 29 stimulated regions significantly
decreased their ACW 0 values with the stimulation, even with the
higher excitatory time constant. Of interest, the regions 2, F1, 10
and F5 which are far from region V1 which we stimulated and
outside the visual stream. In the combination of 5 frequencies
(Supplementary Fig. 4), the ACW 0 values of 17 regions
significantly decreased with stimulation. These included the
non-visual stream regions F7, 7 m, 9/46d, 46d and among others.
Finally, in the stimulation with 20 to 100 Hz changing input
(Supplementary Fig. 6), ACW 0 values of 14 of the stimulated

regions decreased including the regions outside the visual
hierarchy ProM, 7B, F5, 46d, 2 and F1.

Control analysis I: AC-MF correlation. We calculated the
Pearson correlation coefficient and the coefficient of determina-
tion between AC and MF in the seven networks and the cerebral
cortex presented in Supplementary Note 1. First, we aimed to
evaluate if a negative and approximately linear relationship
between both measurements empirically holds via the Pearson
correlation coefficient. Second, we checked if the variation in MF
can substantially predict the variation in AC via the coefficient of

Fig. 5 Pairwise Pearson correlation matrices for temporal autocorrelation (AC). a Schematic illustration of the applied steps for creation of the
correlation matrices. b Seven networks and cerebral cortex correlation matrices. c Paired t Tests Pearson correlation values between Sleep-Rest (R) and
Sleep-Stimulus (S); single data points represent voxel-based Pearson correlation values. Boxplot center point represents the median, boxes the interquartile
range (IQR), and whiskers 1.5 × IQR (Statistics, Student’s paired t Test; significance asterisks, *p < 0.05, **p < 0.01, ***p < 0.001; n= 17 participants).
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determination. Awake-Rest: All seven networks (r ≥−0.63,
p < 0.007) and the cerebral cortex (r=−0.82, p < 0.001) showed
medium to high and approximately linear AC-MF correlations.
Sleep-Rest: The seven networks (r ≥−0.55, p ≤ 0.023) and cere-
bral cortex (r=−0.68, p= 0.002) showed medium to high and
approximately linear AC-MF correlations. Sleep-Stimulus: The
seven networks (r ≥−0.82, p < 0.001) and cerebral cortex
(r=−0.9, p < 0.001) showed high and approximately linear AC-
MF correlations. Supplementary Fig. 1 displays and Supplemen-
tary Table 1 summarizes the AC-MF correlation results.

Control analysis II: AC and MF in four participants fully
asleep during the stimulus state. In the following, we present the
control analysis comprising four participants that remained fully
asleep during the entire stimulus presentation based on the

simultaneous EEG recordings. We refrained from performing statis-
tical tests due to the low number of participants. Instead, we inspected
the results on a qualitative basis. We controlled if the four partici-
pants’ Awake-Rest to Sleep-Rest and Sleep-Rest to Sleep-Stimulus AC
and MF results followed the seventeen participants’ results.

AC seven networks: Awake-Rest vs. Sleep-Rest: AC lengths
increased from Awake-Rest to Sleep-Rest in all seven networks.
Sleep-Rest vs. Sleep-Stimulus: Except for the limbic network, the
remaining six networks showed shorter AC lengths in Sleep-
Stimulus compared to Sleep-Rest. MF seven networks: Awake-Rest
vs. Sleep-Rest: MF levels decreased from Awake-Rest to Sleep-Rest in
all seven networks. Sleep-Rest vs. Sleep-Stimulus: Except for the
limbic network, the remaining six networks showed higher MF levels
in Sleep-Stimulus compared to Sleep-Rest. AC cerebral cortex:
Awake-Rest vs. Sleep-Rest: AC lengths increased from Awake-Rest
to Sleep-Stimulus. Sleep-Rest vs. Sleep-Stimulus: AC lengths

Fig. 6 Pairwise Pearson correlation matrices for median frequency (MF). a Seven networks and cerebral cortex correlation matrices. b Paired t Tests
Pearson correlation values between Sleep-Rest (R) and Sleep-Stimulus (S); single data points represent voxel-based Pearson correlation values. Boxplot
center point represents the median, boxes the interquartile range (IQR), and whiskers 1.5× IQR (Statistics, Student’s paired t Test; significance asterisks,
*p < 0.05, **p < 0.01, ***p < 0.001; n= 17 participants).
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decreased in the Sleep-Rest vs. Sleep-Stimulus. MF cerebral cortex:
Awake-Rest vs. Sleep-Rest: The MF levels decreased from Awake-
Rest to Sleep-Rest. Sleep-Rest vs. Sleep-Stimulus: The MF levels
increased from Sleep-Rest to Sleep-Stimulus.

Overall, the four participants’ AC and MF results followed the
observed results across the three investigated states for all
seventeen participants. The four participants that remained
entirely asleep during Sleep-Stimulus likewise showed shortened
INT and increased MF in response to the auditory stimulus

compared to Sleep-Rest. Supplementary note 2 includes a Figure
of the results (Supplementary Fig. 2) where Supplementary
Tables 2 and 3 summarize the AC results and Supplementary
Tables 4 and 5 summarize the MF results.

Discussion
Our empirical analysis showed INT prolongation and decreased
MF in Sleep-Rest compared to Awake-Rest. We observed the

Fig. 7 Large-scale biophysical model. We used parameters from ref. 28 to simulate the Awake state. The simulation of Sleep-Rest used increased time
constant of excitatory regions. We applied a sine wave on top of white noise input for Sleep-Stimulus. The simulations were performed 30 times, the
results show the distribution. (Statistics, Wilcoxon signed-rank test; significance asterisks, *p < 0.05, **p < 0.01, ***p < 0.001).
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reversed result pattern in Sleep-Stimulus, namely INT shortening
and increased MF, where INT and MF approximately returned to
their respective Awake-Rest levels. The biophysical model sup-
ported the empirically observed results by showing the same INT
patterns across the three investigated states. Together, our results
provide evidence for a significantly preserved capability for
stimulus-induced modulation of INT in a primarily unconscious
state like sleep. Additionally, the capability of INT to respond to
(auditory) stimulation during unconsciousness reached beyond
localized networks and included the complete cerebral cortex.
The results complement recent observations of unconscious brain
dynamics and their stimulus-induced modulation on the local
network and global brain levels8,18,20,37.

Hypothesis one stated INT prolongation during N2 sleep (Sleep-
Rest) compared to the awake resting-state. We observed INT pro-
longation on the local seven networks and global cerebral cortex
topographic levels. Conversely, the MF decreased in N2 sleep, where
power spectra displayed increased power in slower frequencies
compared to the awake state. The observed spectral shift is in line
with the well-known fact that, in addition to the occurrence of
K-complexes and spindles, neuronal high-frequency and low-
amplitude activity under conscious wakefulness shifts to a low-
frequency and high-amplitude pattern under N2 and N3 sleep, as
observed in electrophysiological39–42 and hemodynamic8,43–45

recordings of brain activity. The biophysical model emphasized the
empirically observed INT prolongation during N2 sleep by showing
that the increased excitatory time constant from 20 to 60ms slowed
down the model’s excitatory populations, resulting in increased AC
values. Although we could not find any cellular neuroscience lit-
erature that compared the time constants between asleep and awake
subjects, we hypothesize that this might be a generative model for
our empirical findings, awaiting to be tested in future work. On the
other hand, it should be mentioned that the possible set of models
that can give the same results is huge and we can only test a few. For
example, one might imagine that a change in excitatory-to-excitatory
connection strengths can also lead to the phenomena observed.
Nonetheless, our simulations provide at least one generative model
for the data at hand. In addition, these results were observed again in
different input scenarios as shown in Supplementary Figs. 3 and 4.

The modulation of the brain’s intrinsic spontaneous activity by
extrinsic stimuli diminishes during N2 sleep, where long elec-
trophysiological timescales in the delta band (0.5–4 Hz)
dominate41,46 that suppress modulation by extrinsic sensory
stimuli31,32. Compared to conscious wakefulness, unconscious-
ness in sleep leads to a gradual albeit not complete decoupling
between neuronal and environmental dynamics32, including a
~20% reduced brain metabolism (blood flow) in NREM
sleep45–48, potentially slowing down (prolonging) INT. The here
observed INT prolongation and MF reduction during N2 sleep
are also in line with EEG20, simultaneous EEG-fMRI45, and
fMRI8,43,44 recordings that demonstrated increased low-
frequency and high-amplitude/power spectral content in
N2 sleep compared to conscious wakefulness, matching the
results by our analysis. Paradigmatically, the functional MRI
analysis by41 showed that high-frequency and low-power activity
in sensory cortices under conscious wakefulness vanished in the
NREM sleep stages, and Song et al.45 accordingly demonstrated
highly increased EEG amplitude and BOLD power in slower
frequencies during N2 sleep, corresponding to prolonged INT
and reduced MF levels. Conversely, Song et al.45 observed low-
amplitude/power in a mixed-frequency spectrum in the awake
state, corresponding to the shortened INT and higher MF levels
in Awake-Rest by our analysis.

Hypothesis two concerned the Sleep-Stimulus state. First,
hypothesis two stated INT shortening due to modulation of the
ongoing auditory stimulus (Sleep-Stimulus) compared to

stimulus-free N2 sleep (Sleep-Rest). Second, hypothesis two
assumed higher topographic similarity on the local seven net-
works and global cerebral cortex levels in Sleep-Stimulus than in
Sleep-Rest. We observed INT shortening in the seven networks
and in the cerebral cortex in Sleep-Stimulus. This INT modula-
tion by the ongoing auditory stimulus in sleep during uncon-
sciousness extends previous results that investigated stimulus-
and task-related INT modulations constrained to conscious
wakefulness9,14,17,29,49–51. The biophysical model supported the
empirically observed INT shortening in Sleep-Stimulus where the
introduction of a sine wave on top of white noise in the already
slowed down model resulted in significantly shortened AC values.

Additionally, our finding of the INT’s global reactivity in the
cerebral cortex to the auditory stimulus during sleep extents
previous EEG52–56, simultaneous EEG-MEG54, and simultaneous
EEG-fMRI57–62 studies that observed modulation of neuronal
activity to sensory stimuli during sleep constrained to specific
cortices investigated by other measurements, not including INT.
The second aspect of hypothesis two, namely a global cerebral
cortex modulation by the auditory stimulus during sleep, finds
further support by the observation that not only the seven net-
works showed higher topographic similarity of INT during Sleep-
Stimulus compared to Sleep-Rest, but that the cerebral cortex’s
1000 parcels version exhibited the highest topographic similarity
during Sleep-Stimulus for both INT and MF.

We observed a close relationship between INT prolongation in
Awake-Rest vs. Sleep-Rest and INT shortening in Sleep-Rest vs.
Sleep-Stimulus with corresponding MF changes in both com-
parisons: MF decreases indexed INT prolongation in Sleep-Rest,
while MF increases indexed INT shortening in Sleep-Stimulus. In
this line, a recent fMRI10 investigated the relationship between
INT and functional connectivity (FC) in the eyes-open resting-
state in two datasets comprising 1139 and 10 participants,
respectively. They analyzed the same seven network topography
as in our analysis and applied global signal regression in the data
preprocessing. They10 observed that INT have a close connection
with functional networks on cortical (seven networks) and sub-
cortical (striatum, thalamus, hippocampus, and cerebellum) levels
where INT length systematically varied with FC intensity con-
sistent with previous results28,63. More precisely, longer INT,
measured by the ACW 50 in six of the seven networks leaving the
limbic network out, corresponded to higher degrees of functional
coupling, meaning that INT followed the known
hierarchical–functional organization of higher-order anatomical
structures63–67.

Furthermore, it has been demonstrated10 that inter-participant
FC variability is related to inter-participant INT variability, with
FC strength predicting INT length. Based on earlier findings10,
combined with our observation of prolonged INT and decreased
MF in Sleep-Rest, one theoretical inference is that relatively
slower timescales substantially contribute to longer INT since
slower timescales are related to global FC10,28,63. The high cor-
relations between INT and MF for the seven networks and the
entire cerebral cortex (Supplementary Fig. 1 and Supplementary
Table 1) further underline that low-frequency and high-power
spectral content substantially modulates INT length.

Finally, stimulus-induced INT modulations during sleep do not
exclude the possibility that INT nonetheless serve as a neuronal
predisposition of consciousness, as suggested by the Temporo-
Spatial Theory of Consciousness (TTC)68,69. A neuronal predis-
position of consciousness describes necessary but non-sufficient
conditions for consciousness. The stimulus-induced INT mod-
ulation during sleep can represent a neuronal predisposition of
consciousness. More precisely, INT must exhibit a dynamic
capability for stimulus-induced modulation and, more generally,
what we label temporo-spatial alignment to environmental
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stimuli68,69 so that consciousness can occur. If, in contrast,
stimulus-induced INT modulation remains absent, consciousness
would remain impossible, entailing that participants could no
longer wake up to become conscious. Such a state is the propofol-
induced loss of consciousness in anesthesia, where a recent fMRI
analysis demonstrated the absence of task-induced modulation of
brain dynamics66. Accordingly, our results suggest that INT
modulation may play an important role in constituting uncon-
scious brain dynamics that, subsequently, allow for a transition to
conscious states mediated by other neuronal mechanisms. More
generally, this indicates the importance of INT for a gray zone
between unconscious and conscious states, as postulated by the
TTC68,69. Our results extend previous observations of the spatial
correlates of unconsciousness8 by including the temporal domain
of brain dynamics.

We discuss limitations of our analysis in the following. The
main limitation was that only four participants remained fully
asleep throughout the entire auditory stimulus presentation at the
end of the sleep scanning session. We applied control analyses for
the four participants to ensure the same INT patterns across the
three investigated states observed for all 17 participants. We
replicated the INT results in the four participants obtained for the
17 participants. More precisely, the four participants showed
prolonged INT in Sleep-Rest compared to Awake and shortened
INT in Sleep-Stimulus compared to Sleep-Rest. Accordingly, the
four participants’ MF results decreased in Sleep-Rest and
increased in Sleep-Stimulus, as observed for all 17 participants.

The ongoing auditory stimulus only lasted 5 min 12 s, corre-
sponding to a 145 sampling points time-series given a sampling
rate (TR) of 2.16 s. The short time-series naturally comes with a
lower signal-to-noise ratio than a time-series with more sampling
points. Nonetheless, we refrained from analyzing the participants’
original full-length Awake and Sleep-Rest runs since we aimed to
use identical time-series lengths for the three investigated states.
Varying time-series lengths between Awake, Sleep-Rest, and
Sleep-Stimulus would have likely affected INT and MF estima-
tions differently in the three states, prohibiting sound methodo-
logical comparison between the three states.

Another limitation is that the limbic network showed slightly
longer INT in Sleep-Stimulus than Sleep-Rest. This result does
not follow the remaining six networks that, in turn, displayed
shortened INT in Sleep-Stimulus. However, it is intriguing how
consistently this pattern occurred across measures. It remains
unsolved to what extent the limbic network’s slight INT pro-
longation in Sleep-Stimulus results from neuronal dynamics or if
the relatively low signal-to-noise ratio of the limbic region
impacted the results34,69. The limbic network is prone to signal
dropout and high-frequency artifacts70–72, potentially leading to
artifactual INT and MF results affected by non-neuronal or
hemodynamic noise sources. By contrast, it is possible that during
sleep, the limbic network is more internally-focused but proces-
sing information in a wake-like manner, consistent with studies
demonstrating memory-related reactivation brain areas that
output to the cortical aspects of the limbic network73–76.

Recent electrophysiological ECoG77 and EEG (see ref. 78 for a
review), as well as simultaneous EEG-fMRI44 studies, provided
empirical evidence of local sleep during conscious wakefulness,
meaning that individual neuronal populations displayed slow
wave activity indicative of N2 and N3 sleep while participants
were awake. Conversely, other studies provided evidence of local
wakefulness during sleep by observing brain regions that exhib-
ited wake-like activity79 and that different brain areas showed
sleep dynamics with various delays80, meaning that the awake-to-
sleep transition did not uniformly occur in the brain. Together,
these studies suggest that sleep can affect the brain in a hetero-
genous fashion: wakefulness and sleep can simultaneously emerge

in different brain regions and request further analyses concerning
local states of sleep and wakefulness. While our study demon-
strated INT modulation by auditory inputs during sleep on both
the local network and global cerebral cortex levels, we cannot rule
out the possibility that the here investigated sleep states, namely
Sleep-Rest and Sleep-Stimulus, exhibited local wakefulness in
smaller areas of the cerebral cortex. It remains unknown to what
extent small islands of local wakefulness impact or modulate INT
prolongation during Sleep-Rest, and, conversely, INT shortening
during Sleep-Stimulus. Such an investigation would have reached
beyond our aim of exploring if INT significantly react to auditory
inputs during sleep at all, and if this INT reactivity represents a
brain-wide phenomenon.

Finally, although an additional analysis of the electro-
physiological EEG data in the original EEG-fMRI study62 might
lead to interesting results, we refrained from conducting this
additional analysis for two primary reasons. First, we investigated
specific regions originally obtained via a functional connectivity
fMRI analysis36. It remains unclear and would require a new
approach to properly link the obtained INT results in the seven
investigated networks with time-series analyses for single EEG
electrodes that have a very different spatial arrangement across
the scalp’s surface. Second, we believe that the analysis of the
obtained EEG data would be better suited for a potential future
analysis that focuses on the electrophysiological properties of INT
during wakefulness and sleep irrespective of the analyzed seven
functional MRI networks and data, with a concentration on
detailed EEG investigation that does not run into comprises when
combining EEG and fMRI analyses into the same analysis
or paper.

In this fMRI analysis, we investigated if the capability of INT
for stimulus-induced modulation is also significantly preserved in
an unconscious state like sleep. Indeed, INT showed prolongation
during stimulus-free N2 sleep, while INT shortened during the
presentation of continuous auditory stimulation in sleep, as
compared to the previous stimulus-free N2 sleep. Besides the
local level of seven networks, the auditory stimulus in sleep also
modulated the global INT level of the cerebral cortex. Looking at
the stimulation effects on the brain’s spatial surface, the cerebral
cortex’s topographic organization underwent reorganization
during the exposure to the auditory stimulus as manifested in
higher topographic similarity compared to N2 sleep. The
empirical and modeling results demonstrate the preserved cap-
ability of INT to be modulated by external stimuli in unconscious
states like sleep. This INT modulation during sleep potentially
represents a necessary albeit non-sufficient predisposition for
consciousness.

Methods
Participants. The data collected for this analysis have been
included in a separate previous simultaneous EEG-fMRI study
addressing a different set of hypotheses62. The original EEG-fMRI
study ensured that all participants provided informed consent
and were financially compensated. This research was approved by
the Western University Health Science REB62. Our analysis used
data from 26 right-handed participants (male/female: 11/15; age
mean/SD: 23.8/4.0 years) with no history of psychiatric, neuro-
logical, or sleep disorders. The study ensured that participants
maintained a regular sleep schedule. Participants who met
inclusion criteria were asked to wear an actigraph and to com-
plete a sleep-wake log for one week before the scanning session.
Participants were excluded if the actigraphy or sleep-wake logs
suggested non-compliance with the study’s instructions. In the
final analysis, participants slept for 44 minutes in the scanner, on
average. We re-collected functional MRI data from 21
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participants. Three participants had to be excluded from our
fMRI analysis due to excessive head motion in the awake resting-
state recording, leaving 18 participants for our final analysis. See
the section Functional MRI preprocessing for exclusion criteria.

Data acquisition. A Siemens 3 T Prisma scanner with a 64-
channel head coil acquired whole brain scans via gradient-echo
echo-planar imaging (EPI) (time repetition = 2160 ms, time echo
= 30 ms, voxel size = 3.44 × 3.44 × 3 mm3, flip angle = 90°, slices
= 40, inter-slice gap = 10%, matrix size = 64 × 64 × 40). T1 3D
MPRAGE anatomical scans were acquired before the EEG-fMRI
recordings (time repetition = 2300 ms, time echo = 2.98 ms,
voxel size = 1 × 1 × 1 mm3, flip angle = 90°, matrix size =
256 × 256 × 176). The eyes closed awake resting-state run com-
prised 220 volumes (7 min 55 s), and the sleep run comprised up
to 3333 volumes (120 min). Finally, the auditory ongoing sti-
mulus, immediately presented prior to the end of the scanning
session while participants were still asleep, comprised 145
volumes (5 min 12 s).

Functional MRI awake resting-state and sleep recordings. The
study used in-ear pneumatic headphones. An unrelated audio clip
helped to set the headphone volume for each participant. The
EEG-fMRI scanning session started at 9 pm with a T1 anatomical
scan, followed by an 8 min eyes-closed awake resting-state
recording. The sleep recording started at 10 pm with an average
sleep onset latency of 8.16 ± 10.11 min, and participants were
allowed to sleep for up to a maximum of 120min during scan-
ning. The auditory and ongoing stimulus, a part of the movie
Taken was presented immediately before the end of each parti-
cipant’s scanning session while the participant was still asleep.
The movie excerpt consisted of a narrative of a conversation
between a father and daughter that climaxes with the girl’s
abduction, where the father subsequently delivers a threatening
speech to the kidnappers. More precisely, participants were
required to have had a period of at least 5 min of uninterrupted
N2 or N3 sleep and to have remained asleep during the pre-
sentation of the ongoing auditory stimulus (5 min 12 s). At the
end of the scanning session, ensuring headphone positioning
remained intact during sleeping, participants were awoken and
presented with an unrelated audio clip. Subsequently, the parti-
cipants had to reply if they remembered hearing this auditory
stimulus presentation. All participants asleep for the duration of
the auditory stimulus had no recollection of hearing the stimulus.
After the EEG-fMRI recordings, participants slept for the
remainder of the night in the sleep laboratory.

Functional MRI preprocessing. We performed preprocessing
using AFNI (https://afni.nimh.nih.gov)81. The EEG-fMRI dataset
comprised two runs, one awake resting-state, and one sleep run.
The sleep run also included the auditory stimulus presentation at
the end of each participant’s sleep scanning session. Before pre-
processing the functional MRI data, we cut the raw awake and
sleep runs to the same sampling points of 145 volumes matching
the length of the ongoing auditory stimulus during sleep. We also
cut the 5 min 12 s duration of the auditory stimulus presentation
from the sleep run to preprocess and analyze the auditory sti-
mulus presentation as a distinct Sleep-Stimulus run.

More precisely, we individually cut the sleep time-series for
each participant to only include N2 sleep based on the EEG
information that determined the sleep stages. The rationale for
analyzing the N2 (light sleep) stage, instead of either the N1
(transitional sleep) or N3 (deep or slow wave sleep) stages, was
that a maximum number of participants showed continuous or
non-interrupted N2 sleep comprising at least 145 volumes. Only a

few participants showed N1 or N3 stages lasting at least 145
volumes. Hence choosing the N1 or N3 stages for the sleep
analysis would have drastically reduced the available number of
participants for data analysis. The identical length after cutting
the time-series also ensured that the investigated measurements,
namely temporal autocorrelation and median frequency, were
unaffected by otherwise varying time-series lengths or a varying
number of volumes.

After cutting the raw data into three distinct time-series,
namely Awake-Rest, Sleep-Rest, and Sleep-Stimulus, we indivi-
dually preprocessed each of the three time-series applying the
following steps in AFNI: (1) despiking and slice timing
correction; (2) co-registration with high-resolution T1-weighted
anatomical images; (3) non-linear spatial normalization of the
anatomical scans into MNI152 2009c space and subsequent non-
linear functional to anatomical alignment (normalization); (4)
functional resampling to 3 × 3 × 3 mm3 voxels; (5) regression of
linear and non-linear drift, and regression of local white matter
signals to reduce non-neuronal noise82; (6) bandpass filtering
using the frequency band of 0.01-0.23 Hz where the lower
frequency was chosen to include at least 3 cycles for 0.01 Hz
(within the 5 min 12 s time-series), and the upper frequency was
constrained by the sampling rate (Nyquist frequency) since it has
been shown that meaningful physiological data reaches beyond
the often chosen 0.1 Hz limit83–85; (7) spatial smoothing using an
6 mm full-width at half-maximum isotropic Gaussian kernel; (8)
motion censoring of volumes with Enorm (Euclidean norm of
first differences of motion parameters) >0.35 mm or with an
outlier fraction >10% within the whole-brain mask; (9) applica-
tion of a third-order polynomial interpolation for censored
volumes to preserve a continuous and intact time-series. We
excluded participants exhibiting more than 7% censored volumes
and participants with more than two successively censored
volumes from further data analysis, leaving 17 from the re-
collected 21 participants’ data for the final analysis.

Statistics and reproducibility. We applied paired t tests in our
analysis. We tested two parametric test assumptions86. First, we
controlled the data’s approximate normality via the Shapiro–Wilk
test within each state, i.e., in Awake-Rest, Sleep-Rest, and Sleep-
Stimulus. Second, we tested the assumption of the data’s approx-
imate homogeneity of variance via the Levene test. Results: All
samples passed the Shapiro–Wilk and Levene tests, meaning that the
samples’ significance always exhibited p > 0.05. Consequently, we did
not reject the null hypotheses of normality and homogeneity.

We applied the Bonferroni correction to counterbalance the
problem of multiple comparisons encountered in our analyses86,87.
The Bonferroni correction counterbalances the multiple compar-
isons problem, namely the increased chance of obtaining false-
positive comparisons. Instead of dividing the p-thresholds by the
number of comparisons, paradigmatically p < 0.05/n where n is the
number of comparisons, we multiplied the observed p values by n.
The multiplication preserves the commonly used p thresholds for
statistical significance of p < 0.05, p < 0.01, and p < 0.001 instead of
lowering the p thresholds individually for statistical comparison. The
multiplication of p values by n can result in p values exceeding 1;
Bonferroni corrected p values that exceed one are displayed as p= 1
in our analysis.

Our analysis included two t Tests per network: (1) Awake-Rest
vs. Sleep-Rest and (2) Sleep-Rest vs. Sleep-Stimulus. We
accordingly applied a multiplication factor (Bonferroni correc-
tion) of two for p values to counterbalance the problem of
possible false positives. The Bonferroni correction is conservative,
and strictly controlling for false positives comes at the risk of false
negatives.
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Seven networks and cerebral cortex topography. We assessed
the brain’s cerebral cortex via the most recent version of the
functional connectivity parcellation of 1000 young and healthy
adults by36. The most recent version includes regions that match
the MNI 2009c template instead of the MNI 2006 asymmetric
template of the original publication by ref. 36. The updated version
by AFNI improves structural contrast, allows better spatial con-
tiguity, and offers better nonlinear alignment, consequently
increasing correspondence across participants (see https://afni.
nimh.nih.gov/pub/dist/HBM2021/Schaefer-Yeo_AFNI_Atlas_
OHBM2021_Poster.pdf for an overview on the AFNI update for
the Schaefer-Yeo atlas). The original Schaefer88 and Yeo36 atlases,
including their update for AFNI, offer a variable number from 100
to 1000 parcellations. Based on the updated atlas distributed by
AFNI (https://afni.nimh.nih.gov/pub/dist/atlases/SchaeferYeo/),
we chose the 1000 parcellation version (500 per hemisphere) to
create the seven Yeo networks: limbic, somatomotor (SMN), dorsal
attention (DAN), ventral attention (VAN), visual, frontoparietal
(FPN), and default-mode (DMN). Moreover, we chose the ribbon
version of the updated Schaefer-Yeo atlas that primarily includes
the cortical gray matter instead of the more liberal version that, in
turn, has a higher degree of white matter. Besides investigating
seven networks, we combined the seven networks into one region
of interest that spans across the cerebral cortex, allowing the ana-
lysis at a global level.

Temporal autocorrelation (AC) analysis. The autocorrelation
function, a dimensionless statistic22, measures the degree of poten-
tially repeating patterns in a time-series, where the sampling points’
earlier values can positively or negatively correlate with later values.
Autocorrelation measurements find application in physiological
time-series in general89 and in neuroimaging to estimate the length
of intrinsic neuronal timescales2,3,5,8,10. Accordingly, higher com-
pared to lower autocorrelation values can represent memory, the
transmission or integration of information over time, and may
reflect meaningful processing of internal and external stimuli. The
autocorrelation window (ACW) specifies the individually chosen
time lag for computing the autocorrelation statistic, where the ACW
describes the window length of the autocorrelation function before
the signal’s autocorrelation first reaches or drops below a specific
threshold. Typical window lengths or thresholds applied in
physiology88 or neuroimaging2,7 are the ACW 50 (where the
autocorrelation crosses r= 0.5) and the ACW 0 (the first zero
crossing of the autocorrelation function r= 0).

We analyzed the blood-oxygen-level-dependent (BOLD) tem-
poral autocorrelation (AC) on a voxel-based level. Subsequently,
we calculated the mean AC for each participant, allowing us to
finally take the mean across all participants’ AC results. The AC
formula (Eq. 1) at a given lag contains two ingredients, namely
autocovariance (Eq. 2) and variance (Eq. 3). In these formulas, N
is the number of sampling points, t is a time point in the time-
series, m is the lag, and �x is the mean of the entire time-series (a
constant). The autocorrelation for a specific lag is the autocovar-
iance for that lag as standardized by the variance of the
observations, namely the autocovariance divided by the
variance22.

autocorrelation ¼ autocovariance
variance

ð1Þ

autocovariance ¼ 1
N

∑
N�m

t¼1
ðxt � xÞðxtþm � xÞ ð2Þ

variance ¼ 1
N

∑
N

t¼1
ðxt � xÞ2 ð3Þ

Median frequency (MF) analysis. Further supporting INT
observations, we measured the median frequency in the
frequency-domain. The median frequency divides the area under
the power spectral density curve into two halves of equal
area8,25,26. The median frequency can reflect an additional index
beside the AC supporting INT changes since INTs are related to
long cycle durations of slower frequencies observable in the fre-
quency domain13,20, where longer cycles allow better temporal
integration of various stimuli across time. Accordingly, the MF
can be used as an unbiased index of the extent of temporal
integration of information in different conscious and unconscious
states. To compute the MF, we transformed the time-series into
the frequency domain on a voxel-based level via a Periodogram.
We then computed the median frequency on the voxel-based
level for each participant on the local level of the seven networks
and on the global level of the cerebral cortex. Finally, we took the
mean across all voxels’ median frequency results for each
participant.

Topographic similarity of AC and MF. We also asked to what
extent the local seven networks and the global cerebral cortex exhibit a
higher topographic similarity of AC and MF in Sleep-Stimulus
compared to Sleep-Rest to understand the spatial uniformity of the
information processing that potentially increases from Sleep-Rest to
Sleep-Stimulus. To investigate this question, we computed the pairwise
Pearson correlation using the networks’ single parcels of the updated
Schaefer-Yeo 1000 parcels atlas by AFNI (https://afni.nimh.nih.gov/
pub/dist/atlases/SchaeferYeo/). We calculated the pairwise Pearson
correlation for the seven networks and cerebral cortex. First, we
computed voxel-based AC and MF for each of the network’s or cer-
ebral cortex’s respective parcels for every participant. Second, we
calculated the mean AC and MF across each parcel’s voxel-based AC
and MF results for every participant. Next, we computed the pairwise
Pearson correlation of theN×N parcel matrix, whereN is the number
of the respective network’s or cerebral cortex’s parcels: limbic = 60,
somatomotor = 194, ventral attention = 121, visual = 162, dorsal
attention = 122, frontoparietal = 129, default-mode = 212, and
cerebral cortex = 1000 parcels).

Using paired t Tests, we statistically controlled if the Pearson
correlation distributions between Sleep-Rest and Sleep-Stimulus
significantly diverged, based on the hypothesis of a higher
topographic similarity in Sleep-Stimulus (compared to Sleep-
Rest). Before performing t-tests for each network and the cerebral
cortex, we applied the Fisher Z transform on the Pearson
correlation values, i.e., the Fisher r-to-Z transform. While our
statistical comparison focused on the z-transformed Pearson
correlation distributions between Sleep-Rest and Sleep-Stimulus,
we additionally calculated the median pairwise correlation for
Awake-Rest, Sleep-Rest, and Sleep-Stimulus after leaving one
triangular side out (to discard duplicates) and the diagonal line
that divides the two triangular sides (to remove meaningless
comparisons).

Biophysical model. We used a large-scale biophysical model
introduced by ref. 28 to further validate our empirical results. The
model consists of the following differential Eqs. 4 and 5.

τE
d
dt

viE ¼ �viE þ βE 1þ ηhi
� �

wEEv
i
E þ μEEΣ

N
j¼1FLNijv

j
E

� �
� wEIv

i
I þ Iiext;E

h i

þ

ð4Þ

τI
d
dt

viI ¼ �viI þ βI 1þ ηhi
� �

wIEv
i
E þ μIEΣ

N
j¼1FLNijv

j
E

� �
� wIIv

i
I þ Iiext;I

h i

þ

ð5Þ
In Eqs. 4 and 5 v is the firing rate, τ is intrinsic time constant,

and IExt is the external input to the system governed by the slope
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β of the linear threshold f-I curve. w values are coupling
parameters. μ is a fixed parameter that controls the strength of
long-range excitatory input. FLN (Fraction of Labeled Neurons)
is the structural connectivity matrix based on a macaque
study89,90. E and I correspond to excitatory and inhibitory,
respectively; i and j denotes different regions. h values were
assigned to each area such that the difference in values predicts
SLN according to a logistic regression function g�1 shown in
Eq. 6.

FLNij ¼ g�1ðhi� hjÞ ð6Þ
Resulting h values were normalized by dividing them to the

biggest h. We used the exact same parameters as ref. 28. The
region V1 was given Gaussian noise with 0-mean and unit
variance. Every other region received Gaussian noise with 0-mean
and an SD of 10−5. The model was simulated for 300 s using
Euler–Maruyama method with a time-step of 1 ms. The first
50 seconds were discarded. To simulate the sleeping state, we
changed excitatory time constant τE from 20 to 60 ms. On a
1-dimensional differential equation, this change would have been
trivial, in the sense that it would only scale the time axis
differently. However in the model where excitatory and inhibitory
populations have different time constants (20 ms and 10 ms
respectively), increasing time constant only for excitatory
population would mean slowing down of excitatory populations
relative to inhibitory ones. We simulated this modified model
with the same Gaussian noises by resetting the random number
generator. Finally, we applied a sine wave of 25 Hz frequency on
top of same Gaussian noises to simulate sleeping condition with
stimulus. The sine wave, as opposed to noise, has a finite
timescale and non-zero information, akin to a stimulus. We
calculated ACW-0 values the same way as empirical data on
excitatory firing rates of each region. We performed 30 simula-
tions for each scenario to get 30 ACW-0 values per ROI per state
(Awake-Rest, Sleep-Rest, Sleep-Stimulus).

One might rightfully argue that the choice of 25 Hz in the
simulation is arbitrary. Therefore, we ran the same simulations
with the following scenarios: (i) combination of 3 sine waves with
frequencies 25, 50, 75 Hz added on top of usual white noise input;
(ii) combination of 5 sine waves with frequencies 5, 25, 50, 75 and
100 Hz added on top of usual white noise input (iii) a waveform
that goes between 20 and 100 Hz over the course of whole
simulation added on top of white noise input. The results of these
additional analyses are in agreement with the original 25 Hz
scenario and are presented in the supplementary material.

Control analysis I: AC-MF correlation. We aimed to support
temporal autocorrelation (AC) changes across the three investi-
gated states with a second measurement, namely median fre-
quency (MF). To control that a close and approximately linear
relationship between AC and MF empirically holds, we computed
the Pearson correlation coefficient and the coefficient of deter-
mination (r-squared) in the seven networks and cerebral cortex.
The Pearson correlation coefficient calculates the strength and
direction of a linear relationship between two variables. The
coefficient of determination calculates how much of the variation
in percent in one variable, i.e., AC, can be accounted for by the
other variable, i.e., MF.

Control analysis II: AC and MF in four participants fully
asleep during the stimulus state. Besides analyzing AC and MF
for the included 17 participants after preprocessing and excluding
participants not meeting our exclusion criteria (see section
Functional MRI preprocessing), we analyzed both measurements
in four of the 17 participants that remained fully asleep during the

entire ongoing 5 min 12 s auditory stimulus. The control analyses
ensured that the same AC and MF results in the Sleep-Stimulus
state, as observed for all participants, also apply to the four
participants that remained fully asleep during the auditory pre-
sentation at the end of their respective scanning session.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The functional MRI dataset assessed in this analysis is available from the corresponding
author upon reasonable request. The Source data for Figs. 2–7 can be found in
Supplementary Data 1.

Code availability
The code to replicate the biophysical (computational) model analysis is publicly available
at https://github.com/duodenum96/sleep_paper91.
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